DOI https://doi.org/10.35219/rce206705328

The Impact of Global Climate Change and Global Warming on Public Health and Welfare Cost From Exposure to Environmental Risks

Rodica Pripoaie

<u>rodica.pripoaie@ugal.ro</u>

Dunarea de Jos University of Galati, Romania

The aim of the paper is to presents the impact of global climate change and global warming on public health and welfare cost from exposure to environmental risks. The paper shows the implications of greenhouse gases on the environment with potentially damaging effects on ecosystems, biodiversity and the means of human subsistence. This study attempts to empirically examine the dynamic causal relationships between greenhouse gases, mortality rate and public health and welfare cost from exposure to environmental risks, using the time-series data for the period 1999–2016.

Keywords - greenhouse gases, welfare cost, global warming.

JEL Code: F 64, I 19, O 44.

1. Introduction

Air pollution is a consequence of increasing urbanization and industrialization. Greenhouse gas (GHG) emissions contribute to accelerating climate change. The effect of greenhouse gas emissions on the environment is worrying, especially because in recent years they have had a fulminate development despite international agreements that have taken some decisions on their limitation. Greenhouse gases remain in the atmosphere for a few years to thousands of years and they have a worldwide impact. The global climate change has an impact on mortality rate, public health and welfare cost from exposure to environmental risks. Also, the greenhouse gases have a potentially damaging effect on ecosystems, biodiversity and of human subsistence. It is a dynamic causal relationship between greenhouse gases, **mortality rate** and public health and welfare cost, shows by the time-series data for the period 1999 – 2016.

2. Short literature review

"Ambient air pollution has been associated with a multitude of health effects, including mortality, respiratory and cardiovascular hospitalizations, changes in lung function, asthma attacks, and days lost from work (Bates 1995a; Pope 1996, 2000; Samet et al. 2000a, 2000b; Segala 1999). These studies have been performed in multiple cities around the United States and internationally using various designs and statistical methods." (Wong, E, Gohlke, J, Griffith, W, Farrow, S and Faustman, E, 2004)

Greenhouse gases contribute to global warming because they absorb the sun's energy and prevents the release of harmful gases in space. Thus, while global warming will lead to what will lead to the disappearance of life on Earth.

Eurostat considers that "each greenhouse gas has a different capacity to cause global warming, depending on its radioactive properties, molecular weight and the length of time it remains in the atmosphere.

The global warming potential (GWP) of each gas is defined in relation to a given weight of carbon dioxide for a set time period (for the purpose of the Kyoto Protocol a period of 100 years).

GWPs are used to convert emissions of greenhouse gases to a relative measure (known as carbon dioxide equivalents: CO_2 -equivalents). The weighting factors currently used is the following:

- carbon dioxide = 1,
- methane = 25,
- nitrous oxide = 298,
- sulphur hexafluoride = 22 800;
- hydrofluorocarbons and perfluorocarbons comprise a large number of different gases that have different GWPs. "(https://ec.europa.eu/eurostat/statistics-explained/pdfscache/1180.pdf)

The biggest emitters and the sector that produces the most emissions are:

- energy, fuel combustion and fugitive emissions from fuels, which also includes transport;
 - industrial processes;
 - agriculture;
 - land use, land use change and forestry (LULUCF);
 - waste management.

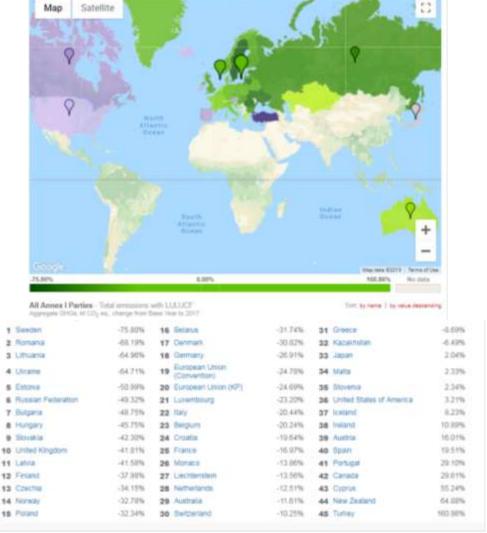


Figure 1. The evolution of total emissions with LULUCF

Source: https://di.unfccc.int/global_map_content/map/index.html?year=growth_base_final&gas=Aggregate_GHGs§or=to&zo
om=2&lat=30&lng=15

As the figure above shows, CO₂ is the greenhouse gas that is emitted the most, produced by human activities. Most of emissions of carbon dioxide come from burning fossil fuels, with additional contributions from deforestation, generically said LULUCF.

Experts say that if greenhouse gas emissions continue at their rate in 2017, the Earth's surface temperature could exceed historic values from 2047 with potentially damaging effects on ecosystems, biodiversity and the means of human subsistence.

3. Actually problems of global climate change and global warming

Globally, deforestation of the equatorial and tropical forests is so great that specialists say that every minute there is a forest of the size of 36 football fields, and that deforestation contributes about 6-12% of total CO₂ emissions.

In Romania, massive deforestation in recent years has led to irreparable environmental damage. Deforestation causes floods, soil erosion, landslides, and the disappearance of animals from their natural environment. Thus, the Carpathian bears from what was a few years ago, Wild Carpathian, do not find enough food in the forest because of deforestation and often go out to cities like Brasov, Buşteni or Sinaia to eating. The once destroyed ecosystem is hard to recover or even impossible.

Climate change affecting the worldwide in various forms, depending on the region. Greenhouse gases create the greenhouse effect leading to global warming and the appearance of extreme weather events, such as floods, tornadoes in areas where so far no record of such weather events, forest fires and changing seasons.

Also at this adds overuse everything is made of plastic, such as bags, bottles, glasses, packages are found everywhere in the oceans and forests.

It requires the emergence of new industries and factories that do not pollute, because pollution and smog around big cities affect people's health, it can also cause more and more allergic disorders, respiratory, lung, lung cancer and thus to reduce its duration and quality of life.

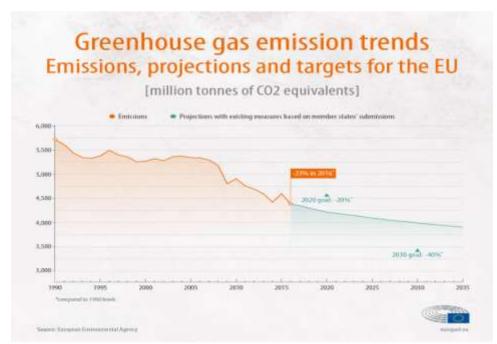
Also, outdated and polluting industries and very old cars pollute the environment. The solution is to replace them with electric cars, clean, and larger scale use of electricity produced from renewable sources such as wind turbines and giving the energy produced by power plants that are highly polluting.

Many organizations, such as Greenpeace fight for environmental protection, but their efforts should be enhanced and all countries understand that pollution and global warming effects worldwide and they at some point will be irreversible, and the costs for each country will be much higher, both financially and humanely, by affecting the health of the population and the quality of life.

4. Measures to reducing the greenhouses gases emissions

41

Since 2008 the European Union set a target to minimize GHG emissions by 20% by 2020 compared to year 1990. Also, in 2015 there was a decrease of 22% of GHG emissions compared with 1990 levels. Then, in 2014, the EU set a new objective of decreasing GHG emissions by at least 40% by 2030 compared to 1990 levels, but in 2017 it estimates there will be a decrease of about 30% in 2030.


Carbon offsetting by forests

The forests have power to absorb CO_2 and so they fight with climate change and offset carbon from the land use sector.

The EU forests have 182 million hectares, covering 43% of its land area. The forest's surface and their weight can vary from one state to another and they absorb the equivalent of 10.9% of total EU GHG emissions each year.

4.2.

In 2018 the European Commission adopted a strategic long-term vision for minimize GHG emissions by 2050, named "A Clean Planet for all", which aims to create a vision and plan to develop new and innovative industries and businesses and not targets.

Sources: http://www.europarl.europa.eu/resources/library/images/20180709PHT07512/20180709PHT07512 original.jpg

At the beginning of this year, 2019, the European Parliament was adopted for the first time ever regulation on CO₂ emissions for trucks to decreasing the transport emissions. Thus, it follows that to be reduced by 30%, by the year 2030, with an intermediate target of 15%, by the year 2025.

Also by 2025, producers of trucks will be ensuring that 2% market share of the sales with zero-and-low-emission vehicles, as electric or hybrid trucks. This regulation will reduce the pollution and to improve air quality. The future of clean trucks is because this sector produces about 15% of EU CO₂ emissions and road transport is the only sector where greenhouse gas emissions are still higher than in 1990.

5. Methodology

The statistical data have been taken from the Eurostat https://ec.europa.eu/eurostat/, from the United Nations Framework Convention on Climate Change (UNFCCC) https://unfccc.int/ and from OECD https://data.oecd.org/. Data collected about GHG and mortality and welfare costs has been processed with EViews 10, graphically represented and interpreted.

Based on the https://data.oecd.org/ database, the following summary of the GHG emission from 1990-2017 is presented.

Table 1. Summary of GHG emissions

	Emissions, in kt CO ₂ equivalent			
	Base year	2000	Last Inventory Year (2017)	
CO ₂ emissions without LULUCF	4,549,519.8	2,567,085.7	2,655,476.7	
CO ₂ net emissions/removals by LULUCF	-283,361.2	-752,235.5	-740,044.3	
CO ₂ net emissions/removals with LULUCF	4,266,158.6	1,814,850.2	1,915,432.4	
GHG emissions without LULUCF	5,812,621.3	3,369,786.3	3,489,856.4	
GHG net emissions/removals by LULUCF	-243,833.2	-707,459.8	-694,162.0	
GHG net emissions/removals with LULUCF	5,568,788.1	2,662,326.5	2,795,694.4	
Indirect CO ₂	1,889.6	1,185.8	727.6	

	Changes in emissions, in percent				
	From 2000 to Last Inventory From Bas		From Base year to Last		
	From Base year to 2000	Year (2017)	Inventory Year (2017)		
CO ₂ emissions without LULUCF	-43.57%	3.44%	-41.63%		
CO ₂ net emissions/removals by LULUCF	165.47%	-1.62%	161.17%		
CO ₂ net emissions/removals with LULUCF	-57.46%	5.54%	-55.10%		
GHG emissions without LULUCF	-42.03%	3.56%	-39.96%		
GHG net emissions/removals by LULUCF	190.14%	-1.88%	184.69%		
GHG net emissions/removals with LULUCF	-52.19%	5.01%	-49.80%		

	Average	Average annual growth rates, in percent per year				
	From 2000 to Last Inventory From Base		From Base year to Last			
	From Base year to 2000	Year (2017)	Inventory Year (2017)			
CO ₂ emissions without LULUCF	-5.56%	0.20%	-1.97%			
CO ₂ net emissions/removals by LULUCF	10.26%	-0.10%	3.62%			
CO ₂ net emissions/removals with LULUCF	-8.19%	0.32%	-2.92%			
GHG emissions without LULUCF	-5.31%	0.21%	-1.87%			
GHG net emissions/removals by LULUCF	11.24%	-0.11%	3.95%			
GHG net emissions/removals with LULUCF	-7.11%	0.29%	-2.52%			

The base year under the Climate Change Convention is 1990 except for Bulgaria (1988), Hungary (average of 1985 to 1987), Poland (1988), Romania (1989) and Slovenia (1986), as defined by decisions 9/CP.2 and 11/CP.4.

Source: https://unfccc.int/

The evolution of GHG emissions with or without LULUCF in the period 1990-2017 is presented in the followings graphics:

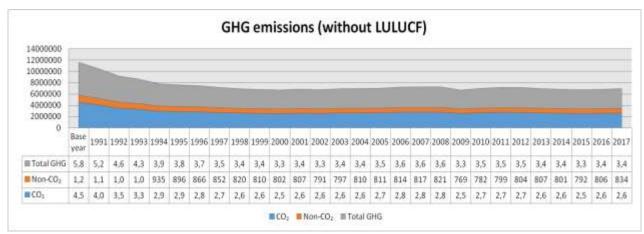


Figure 1. The evolution of the GHG emissions without LULUCF

Source: Author, by using the https://unfccc.int/ data (2019)

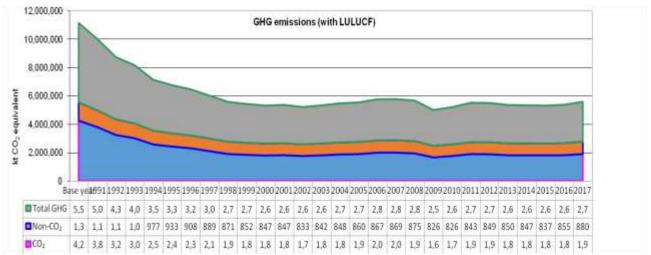


Figure 2. The evolution of the GHG emissions with LULUCF

Source: Author, by using the https://unfccc.int/ data (2019)

The evolution of GHG emissions /removals changes from 1990 to 2017 can be summarized as follows:

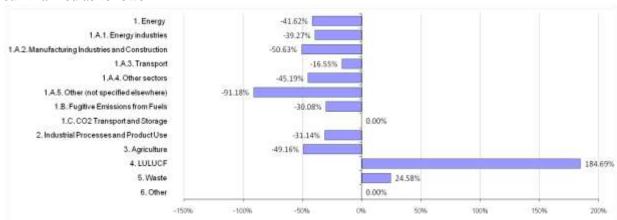


Figure 3. The evolution of the GHG emissions/removals

Source: https://unfccc.int/

Also, the GHG emissions by gas in 2017 compared with base year 1990 are presented in the followings graphics, with or without LULUCF:

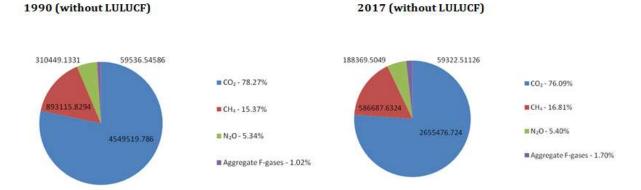


Figure 4. The evolution of the GHG emissions by gas without LULUCF Source: https://unfccc.int/

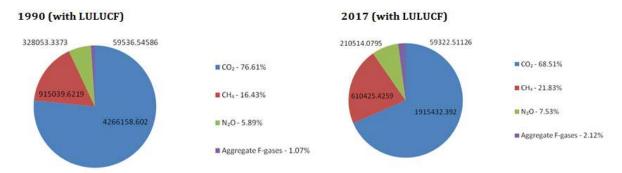


Figure 5. The evolution of the GHG emissions by gas with LULUCF

Source: https://unfccc.int/

And the GHG emissions by sector without LULUCF in 2017 compared with base year 1990 are presented in the followings graphics:

2017

Other - 0.00%

549865.06 0.00 121013.57 549865.06 0.00 121013.57 ■ Energy - 78.99% ■ Energy - 78.99% 550375.43 550375.43 ■ Industrial Processes and Industrial Processes and Product Use - 9.47% Product Use - 9.47% Agriculture - 9.46% Agriculture - 9.46% ■ Waste - 2.08% ■ Waste - 2.08% 4591367.2 4591367.2

Figure 6. The evolution of the GHG emissions by sector without LULUCF

Source: https://unfccc.int/

Other - 0.00%

6. Results and discussions

1990

The statistical data collected about GHG and mortality and welfare costs has been processed with EViews 10, graphically represented and interpreted.

GHG data series and mortality and welfare costs data series are used to determine descriptive indicators and statistical or graphical estimation of econometric models. Evolution of the two variables analyzed in the period 1999-2016 is presented using EViews 10, as follows:

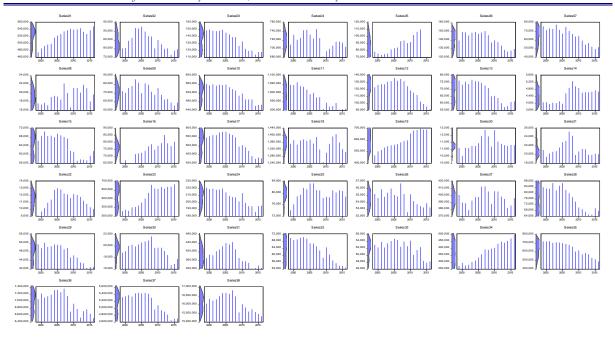


Figure 7. The evolution of the GHG emissions with EViews 10 for OECD statistical data

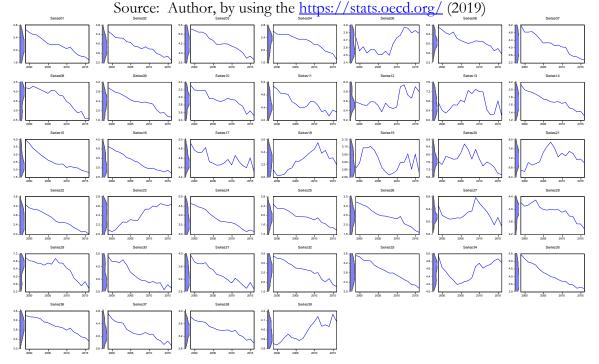


Figure 8. The evolution of the mortality and welfare costs with EViews 10 for OECD statistical data

Source: Author, by using the https://stats.oecd.org/ (2019)

Or if data is analyzed as multiple series, the evolution is following:

Figure 9. Histogram of multiple series Source: Author, by using the EViews 10

Descriptive indicators for mortality and welfare costs data series for OECD Europe and OECD Total are those in the following tables:

Table 2. Summary of descriptive indicators for mortality and welfare costs in OECD Europe

Dependent Variable: OECD___EUROPE2

Method: Least Squares Date: 04/11/19 Time: 00:15 Sample: 1999 2016 Included observations: 18

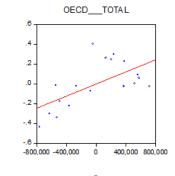
Variable	Coefficient	Std. Error t-Statistic		Prob.
OECDEUROPE C	7.22E-07 0.429809	1.63E-07 4.437487 0.837371 0.513284		0.0004 0.6148
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.551711 0.523693 0.196495 0.617767 4.807244 19.69129 0.000414	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	4.139944 0.284714 -0.311916 -0.212986 -0.298275 0.452208

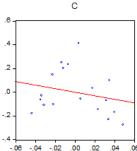
Source: Author, by using the EViews 10

Table 3. Summary of descriptive indicators mortality and welfare costs in OECD Total

Dependent Variable: OECD___TOTAL2

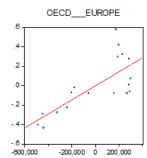
Method: Least Squares Date: 04/11/19 Time: 00:46 Sample: 1999 2016 Included observations: 18

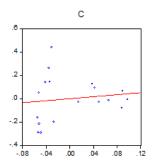

Variable	Coefficient	Std. Error t-Statistic		Prob.
OECDTOTAL C	3.05E-07 -1.497109	9.64E-08 3.164128 1.552867 -0.964094		0.0060 0.3493
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.384892 0.346448 0.189145 0.572416 5.493462 10.01170 0.006014	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	3.414333 0.233968 -0.388162 -0.289232 -0.374521 0.471592


Source: Author, by using the EViews 10

Ordinary covariance analysis between the GHG series and mortality and welfare costs is as follows and we can observe it appears that the two variables are linear correlated.

Figure 10. Figure 11.


OECD___TOTAL2 vs. Variables (Partialled on Regressors)



Source: Author, by using the EViews 10

OECD___EUROPE2 vs. Variables (Partialled on Regressors)

Source: Author, by using the EViews 10

The previous conclusion is confirmed by the Squared Multiple Correlation shown in following table:

Dependent Variable: OECD___EUROPE2

Method: Least Squares Date: 04/11/19 Time: 00:15 Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Std. Error	t-Statistic	Prob.
OECDEUROPE C	7.22E-07 0.429809	1.63E-07 4.437487 0.837371 0.513284		0.0004 0.6148
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.551711 0.523693 0.196495 0.617767 4.807244 19.69129 0.000414	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	4.139944 0.284714 -0.311916 -0.212986 -0.298275 0.452208

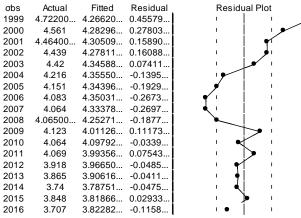
Dependent Variable: OECD___TOTAL2

Method: Least Squares Date: 04/11/19 Time: 00:46 Sample: 1999 2016 Included observations: 18

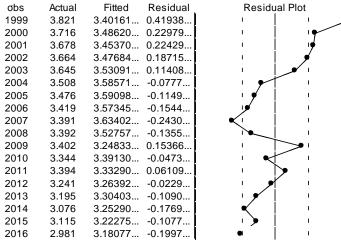
Variable	Coefficient	Std. Error t-Statistic		Prob.
OECDTOTAL	3.05E-07	9.64E-08 3.164128		0.0060
C	-1.497109	1.552867	-0.964094	0.3493
R-squared	0.384892	Mean depend	3.414333	
Adjusted R-squared	0.346448	S.D. dependent var		0.233968
S.E. of regression	0.189145	Akaike info criterion		-0.388162
Sum squared resid	0.572416	Schwarz criterion		-0.289232
Log likelihood	5.493462	Hannan-Quinn criter.		-0.374521
F-statistic	10.01170	Durbin-Watson stat		0.471592
Prob(F-statistic)	0.006014			

To determine the regression equation applies Least Squares Method. So, we obtain the following regression equations:

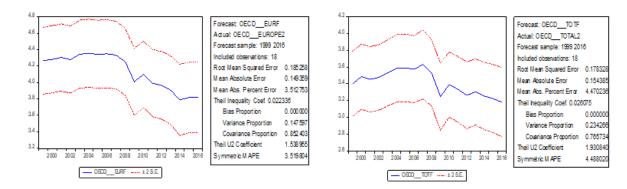
Estimation Command:
LS OECDEUROPE2 OECDEUROPE C
Estimation Equation:
OECDEUROPE2 = $C(1)*OECD$ EUROPE + $C(2)$
Substituted Coefficients:
OECDEUROPE2 = 7.22124994626e-07*OECDEUROPE + 0.42980919739
And for the OECD Total we are obtained: Estimation Command:
LS OECDTOTAL2 OECDTOTAL C
Estimation Equation:

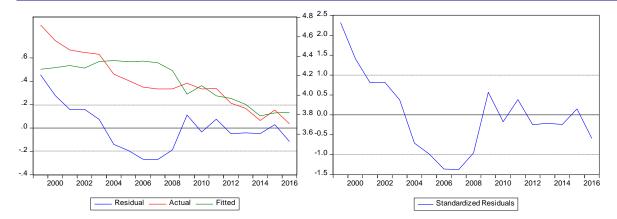

"Dunarea de Jos" University of Galati, Romania - Faculty of Economics and Business Administration

$$OECD$$
__TOTAL2 = $C(1)*OECD$ __TOTAL + $C(2)$


Substituted Coefficients:

OECD___TOTAL2 = 3.05152799009e-07*OECD___TOTAL - 1.49710899199


The evolution of actual, fitted and residual plot for OECD Europe It can be summarized as follows:


And for OECD Total, the evolution of actual, fitted and residual plot is the following:

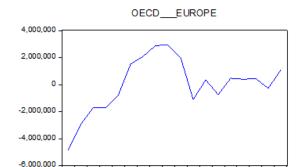
In the graphics bellows are actual and estimated values of the feature analysis and the residual variable values and chart series.

Based on the statistical data provided by OECD we analyzed with EViews and obtained the following results for OECD Europe:

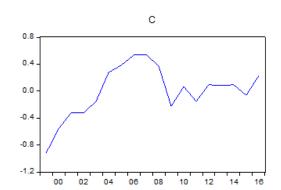
Estimation Command:

LS OECD__EUROPE2 OECD__EUROPE C

Estimation Equation:

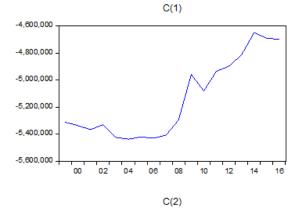


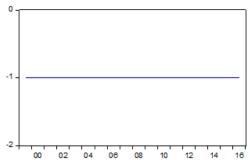
OECD__EUROPE2 = C(1)*OECD__EUROPE + C(2)


Substituted Coefficients:

Gradients of the Objective Function

OECD___EUROPE2 = 7.22124994626e-07*OECD___EUROPE + 0.42980919739


04 06



08

12

Derivatives of the Equation Specification

International Conference "Risk in Contemporary Economy" ISSN-L 2067-0532 ISSN online 2344-5386

XXth Edition, 2019, Galati, Romania,

"Dunarea de Jos" University of Galati, Romania - Faculty of Economics and Business Administration

Derivatives of the Equation Specification

Equation: UNTITLED Method: Least Squares

Specification: RESID = OECD___EUROPE2 - (C(1)*OECD___EUROPE + C(2))

Variable	Derivative of Specification
C(1)	-oecdeurope
C(2)	-1

Coefficient covariance Matrix is presented in the below table:

Derivatives of the Equation Specification

Equation: UNTITLED Method: Least Squares

Specification: RESID = OECD___EUROPE2 - (C(1)*OECD___EUROPE + C(2))

Varia	able	Derivative of Specification		
C(•	-oecdeurope -1		

Scaled Coefficients

Date: 04/11/19 Time: 00:21 Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Standardized Coefficient	Elasticity at Means
OECDEUROPE	7.22E-07	0.742773	0.896180
C	0.429809	NA	0.103820

Coefficient Confidence Intervals Date: 04/11/19 Time: 00:21 Sample: 1999 2016 Included observations: 18

		90%	S CI	95%	6 CI	99%	6 CI
Variable	Coefficient	Low	High	Low	High	Low	High
OECDEUROPE C	7.22E-07 0.429809	4.38E-07 -1.032143	1.01E-06 1.891762	3.77E-07 -1.345338	1.07E-06 2.204957	2.47E-07 -2.015969	1.20E-06 2.875587

Variance Inflation Factors
Date: 04/11/19 Time: 00:22
Sample: 1999 2016
Included observations: 18

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
OECDEUROPE	2.65E-14	326.8914	1.000000
C	0.701190	326.8914	NA

Coefficient Variance Decomposition

Date: 04/11/19 Time: 00:23

Sample: 1999 2016 Included observations: 18

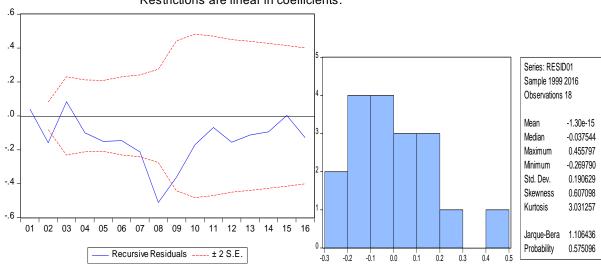
Eigenvalues	0.701190	8.10E-17
Condition	1.16E-16	1.000000

Variance Decomposition Proportions

	Associated Eigenvalue	
Variable	1	2
OECDEUROPE C	0.996941 1.000000	0.003059 4.35E-30

Eigenvectors

V · 11	Associated	Eigenvalue
Variable	1	2
OECDEUROPE C		-1.000000 -1.94E-07

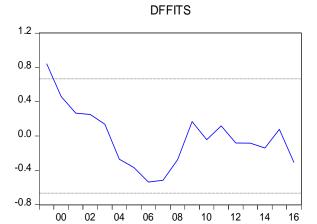

Wald Test: Equation: Untitled

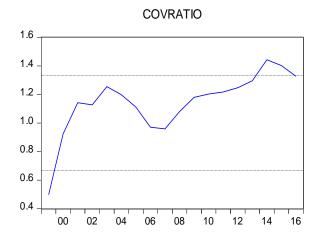
Test Statistic	Value	df	Probability
F-statistic	3.02E+15	(2, 16)	0.0000
Chi-square	6.05E+15		0.0000

Null Hypothesis: C(1)=-0.7, C(2)=0.4298 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
0.6999999999999999999999999999999999999	0.700001 9.20E-06	1.63E-07 0.837371


Restrictions are linear in coefficients.




	RESID01
Mean	-1.30E-15
Median	-0.037544
Maximum	0.455797
Minimum	-0.269790
Std. Dev.	0.190629
Skewness	0.607098
Kurtosis	3.031257
Jarque-Bera	1.106436
Probability	0.575096
Sum	-2.35E-14
Sum Sq. Dev.	0.617767
Observations	18

Influence Statistics

RStudent

Hypothesis Testing for RESID01 Date: 04/11/19 Time: 00:33 Sample: 1999 2016 Included observations: 18

Test of Hypothesis: Mean = -1.30e-15 Assuming Std. Dev. = 0.190629

Sample	Mean = -1.3	30e-15
Sample	Std. Dev. =	0.190629

<u>Method</u>	<u>Value</u>	Probability
Z-statistic	7.12E-17	1.0000
t-statistic	7.12E-17	1.0000

Test of Hypothesis: Variance = 0.190629

Sample Variance = 0.036339

 Method
 Value
 Probability

 Variance Ratio
 3.240678
 0.0001

Test of Hypothesis: Median = -0.037544

Sample Median = -0.037544

<u>Method</u>	<u>Value</u>	Probability
Sign (exact binomial)	9	1.0000
Sign (normal approximation)	-0.235702	0.8137
Wilcoxon signed rank	0.391953	0.6951
van der Waerden (normal scores)	0.541665	0.5880

Median Test Summary

Category	Count	Mean Rank
Obs > -0.037544 Obs < -0.037544 Obs = -0.037544	9 9 0	10.5555556 8.44444444
Total	18	

Empirical Distribution Test for RESID01

Hypothesis: Normal Date: 04/11/19 Time: 00:34 Sample: 1999 2016 Included observations: 18

Method	Value	Adj. Value	Probability
Lilliefors (D)	0.126170	NA	> 0.1
Cramer-von Mises (W2)	0.032044	0.032934	0.8047
Watson (U2)	0.028021	0.028800	0.8397
Anderson-Darling (A2)	0.240673	0.252372	0.7369

Method: Maximum Likelihood - d.f. corrected (Exact Solution)

Parameter	Value	Std. Error	z-Statistic	Prob.
MU	-1.31E-15	0.044932	-2.91E-14	1.0000
SIGMA	0.190629	0.032693	5.830952	0.0000
Log likelihood	4.792818	Mean depende		-1.30E-15
No. of Coefficients	2	S.D. depende		0.190629

Tabulation of RESID01 Date: 04/11/19 Time: 00:35 Sample: 1999 2016 Included observations: 18 Number of categories: 5

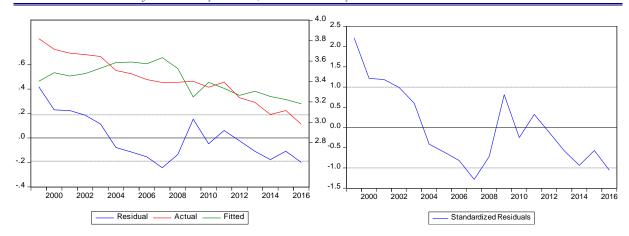
			Cumulative	Cumulative
Value	Count	Percent	Count	Percent
[-0.4, -0.2)	2	11.11	2	11.11
[-0.2, 0)	8	44.44	10	55.56
[0, 0.2)	6	33.33	16	88.89
[0.2, 0.4)	1	5.56	17	94.44
[0.4, 0.6)	11	5.56	18	100.00
Total	18	100.00	18	100.00

BDS Test for RESID01 Date: 04/11/19 Time: 00:35 Sample: 1999 2016 Included observations: 18

Dimension 2 3 4 5 6	BDS Statistic 0.145329 0.231343 0.281990 0.278068 0.228340	Std. Error 0.018613 0.030947 0.038625 0.042286 0.042941	z-Statistic 7.808120 7.475379 7.300625 6.575836 5.317510	Prob. 0.0000 0.0000 0.0000 0.0000 0.0000	
Raw epsilon Pairs within e Triples withir	•	0.284651 232.0000 3214.000	V-Statistic V-Statistic	0.716049 0.551097	
<u>Dimension</u> 2 3 4 5 6	C(m,n) 82.00000 62.00000 46.00000 32.00000 20.00000	c(m,n) 0.602941 0.516667 0.438095 0.351648 0.256410	C(1,n-(m-1)) 92.00000 79.0000 66.0000 54.00000 43.00000	c(1,n-(m-1)) 0.676471 0.658333 0.628571 0.593407 0.551282	c(1,n-(m-1))^k 0.457612 0.285323 0.156106 0.073580 0.028070

Date: 04/11/19 Time: 00:40

Sample: 1999 2016 Included observations: 18


Method: Holt-Winters No Seasonal

Original Series:

Forecast Series: SMOOTHED

Parameters: Alpha Beta	0.9400 0.1100	
Sum of Squared Residu Root Mean Squared Erro		0.278293 0.124341
End of Period Levels:	Mean Trend	-0.108282 -0.026317

Based on the statistical data provided by OECD we analyzed with EViews 10 and obtained the following results for OECD Total:

Gradients of the Objective Function

Gradients evaluated at estimated parameters

Equation: UNTITLED Method: Least Squares

Specification: OECD___TOTAL 2 OECD___TOTAL C

Variable	Sum	Mean	Weighted Grad.
OECDTOTAL	8.01E-08	4.45E-09	-5.17E-24
	3.20E-14	1.78E-15	8.33E-17

Derivatives of the Equation Specification

Equation: UNTITLED Method: Least Squares

Specification: RESID = OECD___TOTAL2 - (C(1)*OECD___TOTAL + C(2))

Var	iable	Derivative of Specification
	(1) (2)	-oecdtotal -1

OECD___TOTAL

Coefficient covariance Matrix has determined

Scaled Coefficients

Date: 04/11/19 Time: 00:53 Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Standardized Coefficient	Elasticity at Means
OECDTOTAL	3.05E-07	0.620397	1.438478
	-1.497109	NA	-0.438478

as:

Coefficient Confidence Intervals Date: 04/11/19 Time: 00:53 Sample: 1999 2016

Included observations: 18

		90%	6 CI	95%	S CI	99%	6 CI
Variable	Coefficient	Low	High	Low	High	Low	High
OECDTOTAL	3.05E-07 -1.497109	1.37E-07 -4.208233	4.74E-07 1.214015	1.01E-07 -4.789039	5.10E-07 1.794821	2.35E-08 -6.032693	5.87E-07 3.038475

Variance Inflation Factors
Date: 04/11/19 Time: 00:54

Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
OECDTOTAL	9.30E-15	1213.247	1.000000
	2.411394	1213.247	NA

Coefficient Variance Decomposition

Date: 04/11/19 Time: 00:54

Sample: 1999 2016 Included observations: 18

Eigenvalues	2.411394	7.67E-18
Condition	3.18E-18	1.000000

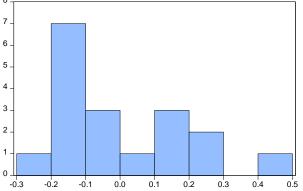
Variance Decomposition Proportions

Variable	Associated 1	Eigenvalue 2
OECDTOTAL	0.999176 1.000000	0.000824 1.23E-32

Eigenvectors

	Associated	Eigenvalue
Variable	1	2
OECDTOTAL	-6.21E-08 1.000000	-1.000000 -6.21E-08

Wald Test: Equation: Untitled


Test Statistic	Value	df	Probability
F-statistic	3.20E+16	(2, 16)	0.0000
Chi-square	6.39E+16	2	0.0000

Null Hypothesis: C(1)=-0.7, C(2)=-1.4971

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
0.6999999999999999999999999999999999999	0.700000 -8.99E-06	9.64E-08 1.552867	

Restrictions are linear in coefficients.

Series: Residuals Sample 1999 2016 Observations 18 -8.88e-16 Mean Median -0.062511 Maximum 0.419388 -0.243027 Minimum Std. Dev. 0.183498 0.689514 Skewness Kurtosis 2.509604 Jarque-Bera 1.606656 Probability 0.447836

Breusch-Godfrey Serial Correlation LM Test:

Null hypothesis: No serial correlation at up to 2 lags

F-statistic	4.431753	Prob. F(2,14)	0.0323
Obs*R-squared	6.978068	Prob. Chi-Square(2)	0.0305

Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 04/11/19 Time: 00:59 Sample: 1999 2016

Included observations: 18

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
OECDTOTAL C RESID(-1) RESID(-2)	-6.53E-08 1.042035 0.572565 0.151072	8.62E-08 1.386632 0.267346 0.282874	-0.757431 0.751486 2.141664 0.534062	0.4614 0.4648 0.0503 0.6017
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.387670 0.256457 0.158228 0.350507 9.907824 2.954502 0.068930	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var nt var terion rion n criter.	-8.88E-16 0.183498 -0.656425 -0.458565 -0.629143 1.293951

Heteroskedasticity Test: Breusch-Pagan-Godfrey

Null hypothesis: Homoskedasticity

F-statistic	0.084874	Prob. F(1,16)	0.7745
Obs*R-squared	0.094980	Prob. Chi-Square(1)	0.7579
Scaled explained SS	0.056645	Prob. Chi-Square(1)	0.8119

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/11/19 Time: 01:00 Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C OECDTOTAL	-0.067019 6.14E-09	0.339341 2.11E-08	-0.197498 0.291332	0.8459 0.7745
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.005277 -0.056894 0.041333 0.027335 32.86881 0.084874 0.774541	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.031801 0.040205 -3.429868 -3.330937 -3.416226 0.793522
Heteroskedasticity Test: Harvey Null hypothesis: Homoskedasticity				
F-statistic Obs*R-squared Scaled explained SS	0.680847 0.734690 0.258712	Prob. F(1,16) Prob. Chi-Squ Prob. Chi-Squ	` '	0.4214 0.3914 0.6110

Test Equation:

Dependent Variable: LRESID2 Method: Least Squares Date: 04/11/19 Time: 01:00 Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C OECDTOTAL	-13.37937 5.76E-07	11.24233 6.98E-07	-1.190088 0.825135	0.2514 0.4214
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.040816 -0.019133 1.369361 30.00241 -30.13905 0.680847 0.421428	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	nt var terion rion n criter.	-4.106753 1.356446 3.571005 3.669935 3.584646 1.024941

Heteroskedasticity Test: Glejser Null hypothesis: Homoskedasticity

F-statistic	0.267490	Prob. F(1,16)	0.6121
Obs*R-squared	0.295978	Prob. Chi-Square(1)	0.5864
Scaled explained SS	0.181362	Prob. Chi-Square(1)	0.6702

Test Equation:

Dependent Variable: ARESID Method: Least Squares Date: 04/11/19 Time: 01:00 Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C OECDTOTAL	-0.244097 2.48E-08	0.770787 4.79E-08	-0.316685 0.517194	0.7556 0.6121
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.016443 -0.045029 0.093885 0.141030 18.10148 0.267490 0.612096	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.154385 0.091840 -1.789053 -1.690123 -1.775412 0.781161
Heteroskedasticity Test:	ARCH			
F-statistic Obs*R-squared	5.627708 4.637987	Prob. F(1,15) Prob. Chi-Squ	uare(1)	0.0315 0.0313

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/11/19 Time: 01:01 Sample (adjusted): 2000 2016

Included observations: 17 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.015998 0.233931	0.005022 0.098610	3.185569 2.372279	0.0061 0.0315
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.272823 0.224344 0.016326 0.003998 46.89697 5.627708	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.023325 0.018537 -5.281997 -5.183971 -5.272253 1.938800

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	0.312540	Prob. F(2,15)	0.7362
Obs*R-squared	0.720089	Prob. Chi-Square(2)	0.6976
Scaled explained SS	0.429451	Prob. Chi-Square(2)	0.8068

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/11/19 Time: 01:01 Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C OECDTOTAL^2 OECDTOTAL	-11.17235 -4.30E-14 1.39E-06	15.07967 5.84E-14 1.88E-06	-0.740888 -0.736636 0.739858	0.4702 0.4727 0.4708
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.040005 -0.087994 0.041937 0.026380 33.18864 0.312540 0.736237	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.031801 0.040205 -3.354293 -3.205898 -3.333831 0.931759
Heteroskedasticity Test: Null hypothesis: Homos	J	an-Godfrey		
F-statistic Obs*R-squared Scaled explained SS	3.511358 7.609361 0.961373	Prob. F(3,13) Prob. Chi-Squ Prob. Chi-Squ	` '	0.0462 0.0548 0.8106

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/11/19 Time: 01:02 Sample (adjusted): 2000 2016

Included observations: 17 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1) OECDTOTAL^2 OECDTOTAL	12.27923 0.297487 4.76E-14 -1.53E-06	6.196047 0.101919 2.40E-14 7.71E-07	1.981784 2.918850 1.987968 -1.983675	0.0691 0.0120 0.0683 0.0688
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.447609 0.320135 0.015285 0.003037 49.23375 3.511358 0.046249	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Wats c	ent var iterion rion n criter.	0.023325 0.018537 -5.321617 -5.125567 -5.302130 2.045095

Heteroskedasticity Test: Harvey Null hypothesis: Homoskedasticity

F-statistic	1.985455	Prob. F(3,13)	0.1660
Obs*R-squared	5.341647	Prob. Chi-Square(3)	0.1484
Scaled explained SS	1.613328	Prob. Chi-Square(3)	0.6564

Test Equation:

Dependent Variable: LRESID2 Method: Least Squares Date: 04/11/19 Time: 01:03 Sample (adjusted): 2000 2016

Included observations: 17 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LRESID2(-1) OECDTOTAL^2 OECDTOTAL	522.7823 0.442146 2.05E-12 -6.56E-05	439.6592 0.223463 1.70E-12 5.47E-05	1.189062 1.978607 1.203077 -1.199040	0.2557 0.0694 0.2504 0.2519
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.314215 0.155956 1.156127 17.37619 -24.30800 1.985455 0.166007	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-4.246096 1.258413 3.330353 3.526403 3.349840 2.252704
Heteroskedasticity Test: Glejser Null hypothesis: Homoskedasticity				
F-statistic Obs*R-squared Scaled explained SS	3.819468 7.964251 2.487632	Prob. F(3,13) Prob. Chi-Squ Prob. Chi-Squ	٠,	0.0366 0.0468 0.4775

Test Equation:

Dependent Variable: ARESID Method: Least Squares Date: 04/11/19 Time: 01:03 Sample (adjusted): 2000 2016

Included observations: 17 after adjustments

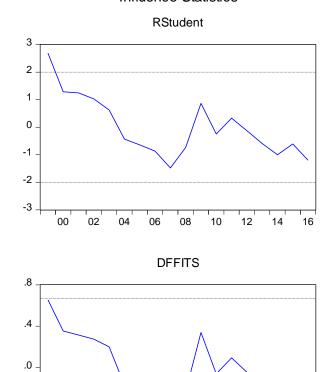
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C ARESID(-1) OECDTOTAL^2 OECDTOTAL	42.66594 0.471562 1.65E-13 -5.31E-06	21.15907 0.156100 8.18E-14 2.63E-06	2.016438 3.020896 2.017750 -2.015268	0.0649 0.0098 0.0647 0.0650
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.468485 0.345828 0.053126 0.036691 28.05479 3.819468 0.036632	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.138797 0.065684 -2.829975 -2.633925 -2.810487 2.214290

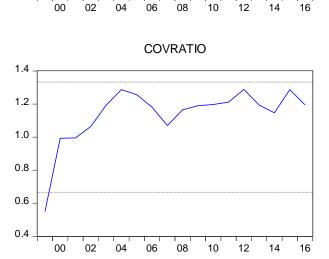
Ramsey RESET Test Equation: UNTITLED

Omitted Variables: Squares of fitted values

Specification: OECD___TOTAL 2 OECD___TOTAL C

	Value	df	Probability
t-statistic	3.936943	15	0.0013
F-statistic	15.49952	(1, 15)	0.0013
Likelihood ratio	12.77390	1	0.0004
F-test summary:			
	Sum of Sq.	df	Mean Squares
Test SSR	0.290895	1	0.290895
Restricted SSR	0.572416	16	0.035776
Unrestricted SSR	0.281520	15	0.018768
LR test summary:			
	<u>Value</u>		_
Restricted LogL	5.493462		
Unrestricted LogL	11.88041		

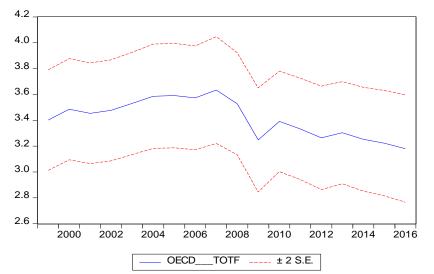

Unrestricted Test Equation:


Dependent Variable: OECD___TOTAL2

Method: Least Squares Date: 04/11/19 Time: 01:04 Sample: 1999 2016 Included observations: 18

Variable	Coefficient	Std. Error	t-Statistic	Prob.
OECDTOTAL C FITTED^2	1.71E-05 -177.3042 -8.067122	4.26E-06 44.66990 2.049083	4.008017 -3.969210 -3.936943	0.0011 0.0012 0.0013
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.697483 0.657148 0.136996 0.281520 11.88041 17.29202 0.000128	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Qui Durbin-Wats	ent var riterion erion nn criter.	3.414333 0.233968 -0.986712 -0.838317 -0.966251 1.644629

Influence Statistics



-.4

-.8

The estimation for OECD Total for mortality and welfare costs is the following:

Forecast: OECD___TOTF Actual: OECD___TOTAL2 Forecast sample: 1999 2016 Included observations: 18 Root Mean Squared Error 0.178328 Mean Absolute Error 0.154385 Mean Abs. Percent Error 4.470236 Theil Inequality Coef. 0.026075 Bias Proportion 0.000000 Variance Proportion 0.234266 Covariance Proportion 0.765734 Theil U2 Coefficient 1.930840

4.488020

Symmetric MAPE

Date: 04/11/19 Time: 01:08

Sample: 1999 2016 Included observations: 18

Method: Holt-Winters No Seasonal

Original Series:

Forecast Series: SMOOTHED

Parameters:	0.8800	
	Beta	0.0100
Sum of Squared Residuals		0.254604
Root Mean Squared Error		0.118931
End of Period	Levels: Mean Trend	-0.197424 -0.057501

7. Conclusions

Global climate is in constant change which affects both the health of the world population, and the level of public expenditure. Greenhouse gases have implications on the environment with potentially damaging effects on ecosystems, biodiversity and the means of human subsistence. Air pollution is a consequence of increasing urbanization and industrialization. Also, greenhouse gas (GHG) emissions contribute to accelerating climate change.

The global climate change has an impact on mortality rate, public health and welfare cost from exposure to environmental risks. It is a dynamic causal relationship between greenhouse gases, **mortality rate** and public health and welfare cost, shows by the time-series data for the period 1999 - 2016.

Experts say that if greenhouse gas emissions continue at their rate in 2017, the Earth's surface temperature could exceed historic values from 2047 with potentially damaging effects on ecosystems, biodiversity and the means of human subsistence.

References

- 1. Bates D.V, (995), Health impacts of air pollution—continuing problems, Scand I Work Environ Health.
- 2. Dragomir, S., Dragomir, G., Trandafir, M., Necsulescu, E., Pripoaie, R., Cretu, C., & Turtureanu, A. (2010). LANDFIL FOR WASTE DEPOSING IN EFFICIENTLY CONDITIONS. International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & mining Ecology Management, 2, 635.
- 3. Wong, E, Gohlke, J, Griffith, W, Farrow, S and Faustman, E, (2004), "Assessing the Health Benefits of Air Pollution Reduction for Children", Environmental Health Perspectives, VOLUME 112, NUMBER 2.

International Conference "Risk in Contemporary Economy" ISSN-L 2067-0532 ISSN online 2344-5386

XXth Edition, 2019, Galati, Romania,

"Dunarea de Jos" University of Galati, Romania - Faculty of Economics and Business Administration

- 4. https://ec.europa.eu/eurostat/statistics-explained/index.php/Air_pollution_statistics_-_air_emissions_accounts
- 5. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
- 6. http://www.europarl.europa.eu/news/en/headlines/society/20180301STO98928/greenhouse-gas-emissions-by-country-and-sector-infographic
- 7. http://www.europarl.europa.eu/news/en/headlines/society/20180703STO07123/climate-change-in-europe-facts-and-figures
- 8. http://www.europarl.europa.eu/news/en/headlines/society/20180208STO97442/cutting-eu-greenhouse-gas-emissions-national-targets-for-2030
- 9. https://www.greenpeace.org/romania/ro/campanii/paduri/Activitati/dezvoltare-fara-defrisare/
- 10. www.oecd.org
- 11. https://ourworldindata.org/air-pollution
- 12. https://www.stateofglobalair.org/data/
- 13. https://unfccc.int/process-and-meetings/transparency-and-reporting/greenhouse-gas-data/ghg-data-unfccc/ghg-data-from-unfccc
- 14. https://unfccc.int/topics/land-use/workstreams/land-use--land-use-change-and-forestry-lulucf
- 15. https://di.unfccc.int/global_map_content/map/index.html?year=growth_base_final&gas=Aggregate_GH Gs§or=to&zoom=2&lat=30&lng=15
- 16. https://waqi.info/